Главная » Модные советы » Какие натуральные волокна. Натуральные волокна: происхождение и свойства

Какие натуральные волокна. Натуральные волокна: происхождение и свойства

При производстве швейных изделий используют самые разнообразные материалы. К ним относятся: ткани, трикотаж, нетканые материалы, натуральная и искусственная кожи, пленочные и комплексные материалы, натуральный и искусственный меха, а также швейные нитки, клеевые материалы, фурнитура.

Знание строения этих материалов, умение определять их свойства, разбираться в ассортименте и оценивать качество являются необходимыми условиями для разработки и производства высококачественной одежды, для правильного выбора методов обработки и установления режимов обработки материалов в процессе производства швейных изделий.

Наибольший объем в швейном производстве составляют изделия, выполненные из текстильных материалов.

Текстильные материалы, или текстиль, материалы и изделия, выработанные из волокон и нитей. К ним относятся ткани, трикотаж, нетканые полотна, швейные нитки и др.

Текстильное волокно представляет собой протяженное тело, гибкое и прочное, с малыми поперечными размерами, ограниченной длины, пригодное для изготовления пряжи и текстильных материалов.

Текстильная нить имеет ту же характеристику, что и текстильное волокно, но отличается от него значительно большей длиной. Нить может быть получена путем прядения волокон, и тогда она называется пряжей. Шелковую нить получают, разматывая кокон тутового шелкопряда. Химические нити формуют из полимера.

В зависимости от происхождения текстильные волокна делят на натуральные и химические. Данная классификация представлена (рисунок 1). К натуральным относятся волокна, создаваемые самой природой, без участия человека. Они могут быть растительного, животного или минерального происхождения.

Натуральные волокна растительного происхождения получают с поверхности семян (хлопок), из стеблей (лен, пенька и др.), из листьев (сизаль и др.), из оболочек плодов (койр).

Натуральные волокна животного происхождения представлены волокнами шерсти различных животных и коконным шелком тутового и дубового шелкопряда.

Химические волокна подразделяют на искусственные и синтетические.

Искусственные волокна получают путем химической переработки природных полимеров растительного и животного происхождения, из отходов целлюлозного производства и пищевой промышленности.

Сырьем для них служат древесина, семена, молоко и т.п. Наибольшее применение в швейной промышленности имеют текстильные материалы на основе искусственных целлюлозных волокон, таких как вискозное, триацетатное, ацетатное.

Рисунок 1 - Классификация текстильных волокон

Синтетические волокна получают путем химического синтеза полимеров, то есть создания имеющих сложную молекулярную структуру веществ, из более простых, чаще всего из продуктов переработки нефти и каменного угля.
К ним относят: полиамидные, полиэфирные, полиуретановые волокна, а также полиакрилонитрильные (пан), поливинилхлоридные (пвх), поливинилспиртовые.

Натуральные Волокна Растительного Происхождения

К волокнам растительного происхождения относят семенные и лубяные (рисунок 2).

Рисунок 2 - Классификация натуральных волокон растительного происхождения

К семенным волокнам относят хлопок.

Хлопком называют волокна, покрывающие семена однолетнего растения хлопчатника. Хлопчатник - растение теплолюбивое, потребляющее большое количество влаги. Произрастает в жарких районах.

В зависимости от длины волокна он бывает:

Коротковолокнистый длина волокна до 27 мм.

Средневолокнистый хлопчатник созревает через 130-140 дней с момента посева, дает волокно длиной 25-35 мм.

Длинноволокнистый хлопчатник имеет более длинный период созревания, меньшую урожайность, но дает более длинное (35-45 мм), тонкое в прочное волокно, которое применяется для выработки высококачественной пряжи.

В зависимости от зрелости волокна хлопка также делятся (рисунок 3).

Рисунок 3 - Эталоны зрелости волокон хлопка

Перезрелые волокна имеют толстые стенки, повышенную прочность, но при этом значительно увеличивается их жесткость. Эти волокна также не пригодны для текстильной переработки (рисунок 3 а).

Зрелое волокно хлопка содержит более 95 % целлюлозы, остальное представляет собой сопутствующие вещества (рисунок 3 б).

Незрелые тонкостенные волокна обладают малой прочностью, низкой эластичностью и плохо окрашиваются. Они не пригодны для текстильного производства (рисунок 3, в).

Степень зрелости волокон хлопка влияет на их прочность и удлинение. Доля пластической деформации в полном удлинении зрелого волокна хлопка составляет 50 %, поэтому хлопчатобумажные ткани сильно сминаются.

К лубяным волокнам относят:

Лен. Волокна льна относятся к так называемым лубяным волокнам, т. е. волокнам, получаемым из стеблей растений (рисунок 4). волокна льна являются наиболее ценными из всех лубяных благодаря высокой прочности, гибкости и хорошим сорбционным свойствам.

а - поперечный разрез, б - продольный разрез

Рисунок 4 - Элементарные волокна льна

Волокна конопли производят из стеблей растений, достигающих в высоту 1-2 метра. Использовали, главным образом, в канатном, упаковочном, мебельном и других производствах.

Пеньку получают из однолетнего травянистого растения. по сравнению с льняным пеньковое волокно более грубое и менее прочное. длинные волокна пеньки перерабатывают в канаты. однако одежные ткани привлекают приверженцев экологического стиля (эко - стиля) натуральной окраской зеленого, серого и коричневого оттенков. основными поставщиками пеньковых волокон являются германия, румыния, нидерланды и азиатские страны.

Родина джута - Индия, где он применялся в качестве волокнистого материала для грубых тканей. В настоящее время основное производство джута сосредоточено в Пакистане, Индии, Бангладеш. волокно джута грубее и толще льняного, однако, широкое распространение объясняется его дешевизной и большой гигроскопичностью. Высота стебля джута достигает 3-4 метров, оно не требует мятья, трепанья и усиленного расчесывания. Джутовое волокно способно впитывать до 27 % влаги, оставаясь на ощупь сухим. Используется джутовое волокно для упаковки таких продуктов как сахар, крупы, кофе, в производстве напольных покрытий, мебельных и джинсовых тканей, а также в смеси с шерстью и шелком.

Рами выращивают в Индии, Китае, Японии, южной европе. Из всех лубяных волокон рами является наиболее прочным и устойчивым к действию гнилостных процессов. Волокна рами имеют прекрасные характеристики по износостойкости: в два раза лучше льня, и в пять раз лучше хлопка. Нити рами очень блестящие, как шелк, хорошо окрашиваются и не теряют при этом свой великолепный шелковый глянец: прекрасно впитывают влагу и быстро сохнут.

Абака (манильская пенька) - это натуральное волокно родом с филиппинских островов. Получают волокна из листьев абака - так называется один из видов текстильного банана, достигающего в высоту 5 метров. Волокна равномерны по тонине, гигроскопичны, прочны, очень хорошо окрашиваются, но самое главное их преимущество - высокая стойкость к действию погоды и морской воды. Манильская пенька используется для производства канатов, морских парусов и других прочных тканей. В настоящее время абака применяется для выработки грубых и тонких одежных тканей, шляп и шляпной тесьмы.

Кокосовые волокна (койр) - их вытягивают из наружного покрытия кокосового ореха, то есть по сути - это шелуха, отходы кокосовой индустрии. Волокна грубые, жесткие, имеют коричневый цвет. используют кокосовые волокна в различных изделиях для придания им повышенной жесткости и износостойкости: в мебельной, обувной промышленности. Как наполнитель оно сохраняет свою упругость, не гниет ни при какой влажности, не слеживается.

Соевое волокно - создано на основе переработки растительных протеинов бобов сои. Благодаря содержанию в соевых бобах органических веществ и жирорастворимых витаминов, одежда из нового волокна способна даже предотвращать старение кожи.

Кенаф получают из однолетних растений кенафа. Из кенафа вырабатывают в основном мешочные и тарные ткани.

Кендырь - волокно очень прочное, устойчиво к загниванию. Используют кендырь для производства крученых изделий и пряжи для рыболовных сетей.

Натуральные Волокна Животного Происхождения

Основным веществом, составляющим натуральные волокна животного происхождения (шерсти и шелка), являются синтезируемые в природе животные белки - кератин и фиброин.

Рисунок 5 - Характеристика натуральных волокон животного происхождения

1) Шерстью принято называть волокна волосяного покрова различных животных: овец, коз, верблюдов и др. шерсть, снятая с овцы, называется руном. Овечья натуральная шерсть составляет более 95 % общего количества шерсти. Остальное приходится на долю верблюжьей и козьей шерсти, козьего пуха и др.

Основным веществом волокна шерсти является кератин, который относится к белковым соединениям. Волокно имеет три слоя: чешуйчатый, корковый и сердцевинный.

Шерстяные ткани мало пачкаются, мало мнутся и впитывают воду, но сильно впитывают водяной пар (до 40 % собственной массы), хорошо сохраняют тепло. Для того, чтобы разгладить шерстяную ткань, достаточно повесить изделие в помещении с влажным воздухом.

Шерстяные изделия имеют свойство свойлачивания, сваливания волокон, поэтому изделия стирают специальными моющими средствами при температуре воды 30 градусов, не трут, не скручивают, надолго не знамачивают.

Чешуйчатый слой является наружным слоем волокон и играет защитную роль. Он состоит из отдельных чешуек, представляющих собой пластинки, плотно прилегающие друг к другу и прикрепленные одним концом к стержню волокна. Каждая чешуйка имеет защитный слой.

Корковый слой является основным слоем волокна и включает в себя ряд продольно расположенных веретенообразных клеток, образующих тело волоса. В середине волокна имеется сердцевинный слой, который состоит из рыхлых тонкостенных клеток, заполненных пузырьками воздуха. Сердцевинный слой, не повышая прочности, способствует лишь увеличению толщины волокна, т.е. ухудшению его качества.

В зависимости от толщины и строения различают следующие основные типы волокон шерсти: пух, переходный волос, ость, мертвый волос (рисунок 6).

Рисунок 6 - Волокна овечьей шерсти

Пух - тонкое извитое волокно, имеющее два слоя: чешуйчатый, состоящий из кольцеобразных чешуек, и корковый.

Переходный волос несколько толще пуха. он состоит из трех слоев: чешуйчатого, коркового и прерывистого сердцевинного.

Ость - грубое прямое волокно, имеющее три слоя: чешуйчатый, состоящий из пластинчатых чешуек, корковый и сплошной сердцевинный.

Мертвый волос - наиболее толстое, грубое, но хрупкое волокно. оно покрыто крупными пластинчатыми чешуйками, имеет узкое кольцо коркового слоя и очень широкую сердцевину. Мертвый волос - жесткое, ломкое волокно с малой прочностью и плохой способностью окрашивается.

Вареная шерсть. Современные способы обработки шерсти способны придавать изделиям уникальные свойства. Такой является «вареная» шерсть. Высокоспециализированные барабанные машины, управляемые компьютером, свойлачивают шерстяные волокна при точно определенных пропорциях воды и силы при температуре 30-40 градусов. Воздействие высокой температуры на шерсть в процессе валяния способствуют тому, что она утрачивает свою естественную шероховатость, до конца носки сохраняет свою форму и качество, не поглощает влагу.

У зимней шерсти есть еще один конкурент - «холодная» шерсть - чистошерстяные камвольные ткани особого качества из супермягкой тонкой шерсти мериносов. Они отличаются легкостью, гигроскопичностью, практичностью и простотой в уходе.

Кашемир - это подшерсток горных коз определенной породы, который не стригут, а вычесывают или выщипывают вручную весной, когда после зимних холодов он животному не нужен. Основными поставщиками кашемира являются страны с резко континентальным климатом - Тибет, Монголия, Китай. кашмирский пух вычесывают специальным щипком. В год 1 коза дает примерно 100-200 грамм пуха. Для свитера понадобится пух 4-6 животных. В мире есть всего несколько марок, специализирующихся на производстве изделий из чистого кашмира: lamberto losani, pashmere, gunex, ривамонти, кучинелли.

Волокно мохер получают от древних ангорских пород коз. Основное поголовье ангорских коз разводят в Турции и американском штате Техас. Не так давно этих коз стали содержать в Австралии и Новой зеландии. От одной ангорской козы получают до 1,6 кг мохерового волокна. Турция, США и Китай ежегодно производят до 25 тысяч тонн этого волокна. Мохер - мягкий и гладкий материал, который пользуется популярностью у швейников всего мира. Из него шьют мужскую и женскую одежду, галстуки. Его часто смешивают с облегченной летней шерстью, благодаря чему одежда меньше мнется и приобретает шелковистость и блеск.

Шерсть ламы, альпака, викуньи. Все эти животные - представители южноамериканских верблюдов сегодня они обитают в основном на высокогорных плато в южных андах. Стрижка альпака производится с ноября по апрель. Стригут альпака вручную - во многих районах до сих пор сортируют вручную по цвету и качеству.

Викунья обитает только в некоторых районах перу, где ее бережно охраняют. Шерсть викуньи по мягкости и прочности несравнима ни с какими другими натуральными волокнами.

Верблюжья шерсть. Шерсть верблюдов, способная противостоять самым различным погодным воздействиям, обладает целым рядом уникальных свойств: низкой теплопроводностью, большой влагопоглощаемостью, прочностью и упругостью. Верблюжья шерсть почти в 2 раза легче и нежнее овечьей, так как более чем на 85 % состоит из пуха, который вычесывают, как правило, раз в год. Особенно ценной считается шерсть верблюжат, которую вычесывают с грудной части животного. Мытая верблюжья шерсть, которую не подвергают ни термической, ни химической обработке, используется для производства высококачественных одеял и пледов.

Сарлычьей шерстью называют шерсть яков. Цвет сарлычьей шерсти обычно черный или коричневый. Ее получают весной, когда яки линяют, и используют для производства одежды и одеял.

Производство шерстяных тканей состоит из нескольких этапов, которые можно представить в виде определенной схемы (рисунок 7).

Рисунок 7 - Технология производства шерстяных тканей

2) Сырьем для шелковых тканей являются волокна нитей, которые выделяют белкоотделительные железы тутового и дикого шелкопрядов.

Шелковые ткани отличаются благородным блеском. Они тонкие, мягкие, драпирующиеся, почти не мнущиеся. При стирке требует осторожность, так как шелк садится и теряет блеск. Ткань нельзя отжимать, выкручивать. влажные изделия заворачивают в ткань и слегка отжимают.

Для шелковых тканей характерны несколько другие этапы производства, нежели для шерстяных тканей (рисунок 8).

Рисунок 8 - Технология производства шелковых тканей

После первичной обработки и сушки коконов сматывают нить и получают шелк-сырец.

Средняя длина сматываемой нити 1000-1300 м.

Химические Волокна

Химические волокна получают путем химической переработки природных или синтетических высокомолекулярных соединений.

Химические волокна получаются в результате прядения (рисунок 9).

При мокром способе прядения фильеру помещают в коагуляционную (осадительную) ванну. Струйки прядильного раствора из фильеры попадают непосредственно в осадительную ванну. Поверхностные слои полимера коагулируют быстрее, образуя твердую оболочку. Внутренние слои коагулируют постепенно: по мере диффузии коагулянта через оболочку затвердевших слоев. Из ванны образующиеся нити подают на приемные вытяжные механизмы еще в пластическом состоянии.

а - сухим способом: 1 - фильтр; 2 - фильера; 3 - нити; 4 - обдувочная шахта; 5 - замасливающий ролик; 6 - приемная бобина;

б - мокрым способом: 1 - приемная бобина; 2 - коагуляционная ванна; 3 - нити; 4 - фильера; 5 - фильтр

Рисунок 9 - Формование нитей из раствора.

Сухой способ прядения отличается от мокрого тем, что прядильный раствор из фильеры попадает в термокамеру; нити затвердевают при высокой температуре на воздухе вследствие испарения растворителя.

Искусственные Волокна

К искусственным относят волокна из целлюлозы и ее производных. Вискозное, триацетатное, ацетатное волокна и их модификации (рисунок 10).

Рисунок 10 - Характеристика искусственных волокон

Вискозное волокно вырабатывается из целлюлозы, полученной из древесины ели, пихты, сосны.

Различают обычное вискозное волокно и его модификации.

Обычные вискозные волокна обладают рядом положительных свойств: мягкостью, растяжимостью, устойчивостью к истиранию, хорошей гигроскопичностью, светостойкостью.

Среди модификаций следует отметить следующие: высокопрочное вискозное волокно, вискозное высокомолекулярное волокно и полинозное волокно.

Высокопрочное вискозное волокно обладает наиболее равномерной структурой, что обеспечивает его прочность, устойчивость к истиранию и многократным изгибам.

Высокопрочное волокно сиблон придает тканям шелковистость, формоустойчивость, уменьшает их усадку, сминаемость.

Вискозное высокомолекулярное волокно является полноценным заменителем средневолокнистого хлопка. Волокно более прочное, упругое и износостойкое, чем обычное вискозное волокно.

Полинозное волокно - модифицированное вискозное волокно, являющееся полноценным заменителем тонковолокнистого хлопка при производстве сорочечных, бельевых, плащевых тканей, тонких трикотажных полотен и швейных ниток.

При стирке необходимо учитывать, что в мокром состоянии вискозные волокна теряют около 50 - 60 % прочности.

Вискозные ткани могут напоминать шелк, шерсть в зависимости от обработки волокон. Для вискозных тканей также характерен единый процесс производства, состоящий из нескольких стадий (рисунок 11).

Рисунок 11 - Технология производства шерстяных тканей

Триацетатные и ацетатные волокна называют ацетилцеллюлозными. они вырабатываются из хлопковой целлюлозы.

Под микроскопом поперечный срез ацетилцеллюлозных волокон менее изрезанный, чем вискозных, поэтому в продольном направлении они имеют меньше штрихов.

Ацетилцеллюлозные волокна обычно тоньше, мягче, легче вискозных и имеют больший блеск. По гигроскопичности, прочности, износостойкости ацетилцеллюлозные волокна уступают вискозным. В мокром состоянии волокна дают трудноустранимые замины, поэтому изделия из них при стирке не рекомендуется кипятить и выкручивать.

Метод производства ацетатного волокна основан на использовании уксуснокислых эфиров целлюлозы - ацетилцеллюлоз, растворимых в ряде органических растворителей.

При горении ацетатного волокна на его конце образуется оплавленный бурый шарик и ощущается характерный запах уксуса.

Гигроскопичность триацетатных волокон в 2,5 раза ниже, чем ацетатных.

Ацетатные волокна имеют малые сминаемость и усадку, способность сохранять в изделиях эффекты гофре, плиссе после мокрых обработок. Общие недостатки: высокая электризуемость, низкая устойчивость к истиранию, склонность к образованию заломов в мокром состоянии.

Синтетические Волокна

Преимущество синтетических тканей - дешевый способ производства, прочность, малая сминаемость. отрицательными свойствами являются малая гигроскопичность, воздухопроницаемость и элекризуемость. Синтетически волокна подразделяются на несколько видов (рисунок 12).

Рисунок 12 - Характеристика синтетических волокон

Полиамидные волокна. Волокно капрон, применяющееся наиболее широко, получают из продуктов переработки каменного угля и нефти.

Легкость, упругость, исключительно высокие прочность и износостойкость полиамидных волокон способствуют их широкому применению. Полиамидные волокна не разрушаются микроорганизмами и плесенью, не растворяются органическими растворителями, стойки к действию щелочей любой концентрации.

Шелон - структурно-модифицированное полиамидное легкое волокно, используемое при выработке шелковых блузочных и платьевых тканей.

Мегалон - модифицированное полиамидное волокно, близкое по гигроскопичности к хлопку, но превосходящее его по прочности и износостойкости в три раза.

Трилобал - профилированные полиамидные нити, имитирующие натуральный шелк.

Полиэфирные волокна. В общемировом производстве синтетических волокон полиэфирные волокна занимают первое место. Среди полиэфирных волокон хорошо известен лавсан. Исходным сырьем для получения лавсана служат продукты переработки нефти.

Характерными свойствами лавсана являются легкость, упругость, прочность, морозостойкость, стойкость к гниению и плесени, устойчивость к действию моли.

Лавсан устойчив к стирке и химической чистке. Гигроскопичность лавсана в 10 раз ниже, чем капрона, поэтому в текстильном производстве штапельный лавсан применяют для смешивания с вискозными и натуральными волокнами. В чистом виде лавсан используется для изготовления швейных ниток, кружев.

Полиуретановые волокна. Полиуретан используют для формования нитей спандекс (ликры). Волокна спандекс относятся к эластомерам, так как обладают исключительно высокой эластичностью.

Применяются нити спандекс для изготовления эластичных лент, тканей и трикотажных спортивных, корсетных и медицинских изделий.

Нити спандекса обладают легкостью, мягкостью, хемостойкостью, устойчивостью к действию нота и плесени, хорошо окрашиваются, придают изделиям упругость, эластичность, формоустойчивость и несминаемость. К их недостаткам относятся низкие гигроскопичность и теплостойкость, невысокая прочность и светостойкость.

Полиакрилонитрильные (пан) волокна. Исходным сырьем для изготовления нитрона служат продукты переработки каменного угля, нефти, газа. Нитрон - наиболее мягкое, шелковистое и теплое синтетическое волокно. По теплозащитным свойствам превосходит шерсть, но по стойкости к истиранию уступает даже хлопку. Прочность нитрона вдвое ниже прочности капрона, гигроскопичность очень низкая.

Поливинилхлоридные (пвх) волокна. Исходным сырьем для получения пвх волокон служат этилен и ацетилен. Выпускаются суровые и окрашенные в массе поливинилхлоридные волокна. Различают высокоусадочные волокна шерстяного хлопкового типа и малоусадочные. Высокоусадочные волокна в два раза прочнее малоусадочных. Вволокна негигроскопичны, не набухают в воде, но имеют высокую паропроницаемость.

ПВХ волокна морозостойки, стойки к действию микроорганизмов и плесени, щелочей, спирта и бензина. При сушке в токе горячего воздуха волокна дают необратимую тепловую усадку. Рекомендуется стирка изделий в теплых растворах моющих средств без кипячения обработка на паровоздушном манекене прессе и утюгом не допускается.

Хлорин не горит. При внесении в пламя волокно сжимается, ощущается запах хлора. Добавление хлорина снижает горючесть текстильных материалов.

Поливинилспиртовые волокна. Волокна вырабатываются из поливинилового спирта. Одно из волокон этой группы - винол. Винол - наиболее дешевое и гигроскопичное синтетическое волокно. По гигроскопичности винол приближается к хлопку, а по стойкости к истиранию в два раза его превосходит.

Винол стоек к действию мыльно-содовых растворов, но в мокром состоянии теряет прочность на 15 - 25 %. При производстве синтетических тканей необходимо так же соблюдать определенную последовательность операций (рисунок 13).

Полиолефиновые волокна. Самые легкие синтетические волокна, объемная масса их меньше единицы. Они не гигроскопичны, обладают высокой прочностью, биостойскостью, высоким коэффициентом трения.

Рисунок 13 - Технология производства синтетических тканей

Основу всех материалов, тканей и трикотажных полотен составляют волокна. Друг от друга волокна отличаются по химическому составу, строению и свойствам. В основу существующей классификации текстильных волокон положено два основных признака – способ их получения (происхождение) и химический состав, так как именно они определяют основные физико-механические и химические свойства не только самих волокон, но и изделий, полученных из них.

Классификация волокон

С учетом классификационных признаков волокна делятся на:

  • натуральные;
  • химические.

К натуральным волокнам относят волокна природного (растительного, животного, минерального) происхождения: хлопок, лен, шерсть и шелк.

К химическим волокнам относят волокна, изготовленные в заводских условиях. При этом химические волокна подразделяются на искусственные и синтетические.

Искусственные волокна получают из природных высокомолекулярных соединений, которые образуются в процессе развития и роста волокон (целлюлоза, фиброин, кератин). К тканям из искусственных волокон относятся: ацетат, вискоза, модал, штапель. Эти ткани прекрасно пропускают воздух, очень долго остаются сухими и приятны на ощупь. Сегодня все эти ткани активно используются производителями текстильной промышленности, а, благодаря новейшим технологиям, способны заменять натуральные.

Синтетические волокна получают путем синтеза из природных низкомолекулярных соединений (фенола, этилена, ацетилена, метана и др.) в результате реакции полимеризации или поликонденсации в основном из продуктов переработки нефти, каменного угля и природные газов.

Натуральные волокна растительного происхождения

Хлопок(Cotton) - хлопком называют волокна, растущие на поверхности семян однолетних растений хлопчатника. Он является основным видом сырья текстильной промышленности. Собранный с полей хлопок-сырец (семена хлопчатника, покрытые волокнами) поступает на хлопкоочистительные заводы. Здесь происходит его первичная обработка, которая включает в себя следующие процессы: очистку хлопка-сырца от посторонних сорных примесей (от частиц стеблей, коробочек, камней и др.), а также отделение волокна от семян (джинирование), прессование волокон хлопка в кипы и их упаковку. В кипах хлопок поступает на дальнейшую переработку на хлопкопрядильные фабрики.

Хлопковое волокно представляет собой тонкостенную трубочку с каналом внутри. Волокно несколько скручено вокруг своей оси. Поперечный срез его имеет весьма разнообразную форму и зависит от зрелости волокна.

Для хлопка характерны относительно высокая прочность, теплостойкость (130-140 °С), средняя гигроскопичность (18-20%) и малая доля упругой деформации, вследствие чего изделия из хлопка сильно сминаются. Хлопок отличается высокой устойчивостью к действию щелочей. Стойкость хлопка к истиранию невелика.

К хлопчатобумажным тканям относятся ситец, бязь, сатин, поплин, тафта, толстая байка, тонкий батист и шифон, джинсовое полотно.

Льняное волокно - льняное волокно получают из стебля травянистого растения – льна. Для получения волокна стебли льна замачивают с целью разъединения лубяных пучков друг от друга и от соседних тканей стебля путем разрушения пектиновых (клеящих) веществ микроорганизмами, развивающимися при намокании стебля, а затем мнут для размягчения древесной части стебля. В результате такой обработки получают лен-сырец, или мятый лен, который подвергают трепанию и чесанию, после чего получают техническое льняное волокно (трепаный лен).

Элементарное волокно льна имеет слоистое строение, что является результатом постепенного отложения целлюлозы на стенках волокна, с узким каналом посередине и поперечными сдвигами по длине волокна, которые получаются в процессе образования и роста волокна, а также в процессе механических воздействий при первичной обработке льна. В поперечном сечении элементарное волокно льна имеет пяти- и шестиугольную форму с закругленными углами.

Изделия изо льна очень прочные, долго не изнашиваются, хорошо впитывают влагу и при этом быстро сохнут. Но при носке очень быстро мнутся.. Чтобы уменьшить «помятость» к льняной нити добавляют полиэстер. Или смешивают лен, хлопок, вискозу и шерсть.

Льняные ткани выпускаются суровыми, полубелыми, белыми и крашеными.

Натуральные волокна животного происхождения

Шерсть(wool) - шерстью называют волосяной покров овец, коз, верблюдов и других животных. Основную массу шерсти (94-96%) для предприятий текстильной промышленности поставляет овцеводство.

Шерсть, снятая с овец, обычно очень сильно загрязнена и, кроме того, весьма неоднородна по качеству. Поэтому, прежде чем отправить шерсть на текстильное предприятие, ее подвергают первичной обработке. Первичная обработка шерсти включает следующие процессы: сортировку по качеству, разрыхление и трепание, мойку, сушку и упаковку в кипы. Овечья шерсть состоит из волокон четырех типов:

  • пуха – очень тонкого, извитого, мягкого и прочного волокна, круглого в поперечном сечении;
  • переходного волоса – более толстого и грубого волокна, чем пух;
  • ости – волокна, более жесткого, чем переходный волос;
  • мертвого волоса – очень толстого в поперечнике и грубого неизвитого волокна, покрытого крупными пластинчатыми чешуйками.

Шерсть, которая состоит преимущественно из волокон одного типа (пуха, переходного волоса), называют однородной. Шерсть, содержащая волокна всех указанных типов, называют неоднородной. Особенностью шерсти является ее способность к свойлачиванию, что объясняется наличием на ее поверхности чешуйчатого слоя, значительной извитостью и мягкостью волокон. Благодаря этому свойству из шерсти вырабатывают довольно плотные ткани, сукна, драпы, фетр, а также войлочные и валяные изделия. Шерсть обладает малой теплопроводностью, что делает ее незаменимой при производстве одежды зимнего ассортимента.

Шелк - шелком называют тонкие длинные нити, вырабатываемые шелкоотделительными железами шелковичного червя (шелкопряда) и наматываемые им на кокон. Коконная нить представляет собой две элементарные нити (шелковины), склеенные серицином – природным клеящим веществом, вырабатываемым шелкопрядом. Особенно чувствителен шелк к действию ультрафиолетовых лучей, поэтому срок службы изделий из натурального шелка при солнечном освещении резко уменьшается. Натуральный шелк используется при изготовлении тканей и, кроме этого, широко используется при выработке швейных ниток. Шелковые ткани легкие и прочные. Крепость шелковой нити равна крепости стальной проволоки того же диаметра. Шелковые ткани создают, скручивая нити различным образом. Так получаются крепы, атлас, газ, фай, чесуча, бархат. Они хорошо впитывают влагу (равную половине собственного веса) и очень быстро сохнут.

Химические волокна

Производство химических волокон и нитей включает в себя несколько основных этапов:

  • получение сырья и его предварительную обработку;
  • приготовление прядильного раствора и расплава;
  • формование нитей и волокон;
  • их отделку и текстильную переработку.

При производстве искусственных и некоторых видов синтетических волокон (полиакрилонитрильных, поливинилспиртовых и поливинилхлоридных) применяют прядильный раствор, при производстве полиамидных, полиэфирных, полиолефиновых и стеклянных волокон – прядильный расплав.

При формовании нитей прядильный раствор или расплав равномерно подается и продавливается через фильеры – мельчайшие отверстия в рабочих органах прядильных машин.

Струйки, вытекающие из фильер, затвердевают, образуя нити, которые затем наматываются на приемные устройства. При получении нити из расплава их затвердевание происходит в камерах, где они охлаждаются потоком инертного газа или воздуха. При получении нитей из растворов их затвердевание может происходить в сухой среде в потоке горячего воздуха (этот способ формования называется сухим), или в мокрой среде в осадительной ванне (такой способ называется мокрым). Фильеры могут быть различной формы (круглые, квадратные, в виде треугольников) и размеров. При производстве волокон в фильере может быть до 40 000 отверстий, а при получении комплексных нитей – от 12 до 50 отверстий.

Сформованные из одной фильеры нити соединяются в комплексные и подвергаются вытягиванию и термообработке. В результате этого нити становятся более прочными благодаря лучшей ориентации их макромолекул вдоль оси, но менее растяжимыми вследствие большей распрямленности их макромолекул. Поэтому после вытягивания нити подвергаются термофиксации, где молекулы приобретают более изогнутую форму при сохранении их ориентации.

Отделка нитей проводится с целью удаления с их поверхности посторонних примесей и загрязнений и придания им некоторых свойств (белизны, мягкости, шелковистости, снятия электризуемости).

После отделки нити перематываются в паковки и сортируются.

Искусственные волокна

Вискозные волокна – это волокна из щелочного раствора ксантогената. По своему строению вискозное волокно неравномерно: внешняя его оболочка имеет лучшую ориентацию макромолекул, чем внутренняя, где они располагаются хаотически. Вискозное волокно представляет собой цилиндр с продольными штрихами, образующимися при неравномерном затвердевании прядильного раствора.

Вискоза пользуется популярностью во всем мире среди ведущих модельеров и покупателей из-за своего шелковистого блеска, возможности окрашивания в яркие тона, мягкости и высокой гигроскопичности (35-40%), ощущении прохлады в жару.

Волокно Модал(Modal) – это модернизированное 100% вискозное прядильное волокно, удовлетворяющее всем экологическим требованиям, производится исключительно без применения хлора, не содержит вредных примесей. Разрывная прочность его выше, чем у вискозы, а по гигроскопичности он превосходит хлопок (почти в 1,5 раза) - качества, столь необходимые для тканей для постельного белья. Модал и ткани с Модалом остаются мягкими и эластичными даже после многократных стирок. Это происходит благодаря тому, что гладкая поверхность Модала не позволяет примесям (извести или моющему средству) оставаться на ткани, делая ее жесткой на ощупь. Изделия с Модалом не требуют применения при стирке смягчителей и сохраняют свои певоначальные цвета и мягкость, давая ощущение «кожа к коже» даже после многочисленных стирок.

Бамбуковое волокно(Bamboo) - регенерированное целлюлозное волокно, изготовленное из мякоти бамбука. Тонкостью и белизной напоминает вискозу, обладает высокой прочностью. Бамбуковое волокно устраняет запахи, останавливает рост бактерий и убивает их. Выделено антибактериальное вещество бамбука («бамбу бан»). Способность бамбукового волокна останавливать рост и убивать бактерии сохраняется даже после пятидесяти стирок.

Существуют два способа производства бамбукового волокна из бамбука, каждому из которых предшествует измельчение бамбука.

Химическая обработка - гидролиз-подщелачивание: Едкий натр (NaOH) преобразует мякоть бамбука в регенерированное целлюлозное волокно (размягчает её). Сероуглерод (CS2) используется для гидролиза-подщелачивания, комбинированного с многофазным отбеливанием. Этот метод не является экологически чистым, но используется наиболее часто благодаря скорости выработки волокна. Токсичные остатки процесса вымываются из пряжи в ходе последующей обработки.

Механическая обработка (такая же, как при обработке льна и конопли): Мякоть бамбука размягчается ферментами, после чего из нее вычёсываются отдельные волокна. Это дорогостоящий метод, но экологически чистый.

Волокно Лиоце́лл (Lyocell) - это целлюлозные волокна. Впервые изготовлены в 1988 году компанией Courtaulds Fibres UK на опытном заводе S25. Лиоцелл выпускается под различными коммерческими названиями: Tencel® (Тенцель) - компания Lenzing, Орцел® - ВНИИПВ (Россия, г. Мытищи).

Получение волокна лиоцелл основано на процессе прямого растворения целлюлозы в N-метилморфолин-N-оксиде.

Ткани с волокнами Лиоцелл используются при изготовлении различной одежды, чехлов для матрасов и подушек, постельного белья.

Ткани из лиоцелла имеют ряд преимуществ: они приятные на ощупь, прочные, гигиеничные и экологически чистые, более эластичные и гигроскопичные, чем хлопок. Считается, что ткани из лиоцелла могут составить серьёзную конкуренцию тканям из природных волокон.

Лиоцелл относится к новому поколению целлюлозных волокон. Хорошо впитывает влагу и пропускает воздух, обладает высокой прочностью в сухом и влажном состоянии, хорошо держит форму. Имеет мягкий блеск, присущий натуральному шёлку. Хорошо окрашивается, не скатывается, не меняет форму после стирки. Не требует особого ухода.

Синтетические волокна

Полиамидные волокна – капрон, анид, энант – наиболее широко распространены. Исходным сырьем для него являются продукты переработки каменного yгля или нефти – бензол и фенол. Волокна имеют цилиндрическую форму, поперечное сечение их зависит от формы отверстия фильеры, через которое продавливаются полимеры. Полиамидные волокна отличаются высокой прочностью при растяжении, стойки к истиранию, многократному изгибу, обладают высокой химической стойкостью, морозоустойчивостью, устойчивостью к действию микроорганизмов. Основными их недостатками являются низкая гигроскопичность и светостойкость, высокая электризуемость и малая термостойкость. В результате быстрого “старения” они на свету желтеют, становятся ломкими и жесткими. Полиамидные волокна и нити широко используются при производстве трикотажных изделий в смеси с другими волокнами и нитями.

Полиэфирное волокно - лавсан , вырабатываются из продуктов переработки нефти. В поперечном сечении лавсан имеет форму круга. Одним из отличительных свойств лавсана является его высокая упругость, при удлинении до 8% деформации полностью обратимы. В отличие от капрона лавсан разрушается при действии на него кислот и щелочей, гигроскопичность его ниже, чем капрона (0,4 %), поэтому для выработки тканей бытового назначения лавсан в чистом виде не применяется. Волокно является термостойким, обладает низкой теплопроводностью и большой упругостью, что позволяет получать из него изделия, хорошо сохраняющие форму; имеют малую усадку. Недостатками волокна являются его повышенная жесткость, способность к образованию пиллинга на поверхности изделий и сильная электризуемость.

Лавсан широко применяется при выработке тканей в смеси с шерстью, хлопком, льном и вискозным волокном, что придает изделиям повышенную стойкость к истиранию и упругость.

Полиакрилонитрильное волокно - нитрон . Полиакрилонитрильные волокна вырабатываются из акрилонитрила – продукта переработки каменного угля, нефти или газа. Акрилонитрил полимеризацией превращается в полиакрилонитрил, из раствора которого формуется волокно. Затем волокна вытягивают, промывают, замасливают, гофрируют и сушат. Волокна вырабатываются в виде длинных нитей и штапеля. По внешнему виду и на ощупь длинные волокна похожи на натуральный шелк, а штапельные – на натуральную шерсть. Изделия из этого волокна после стирки полностью сохраняют форму, не требуют глажения. Волокно нитрон обладает рядом ценных свойств: по теплозащитным свойствам оно превосходит шерсть, имеет низкую гигроскопичность (1,5%), мягче и шелковистее капрона и лавсана, стойко к действию минеральных кислот, щелочей, органических растворителей, бактерий, плесени, моли, ядерным излучениям. По стойкости к истиранию нитрон уступает полиамидным и полиэфирным волокнам.

Полиуретановое волокно – эластан или спандекс . Волокно, обладающее низкой гигроскопичностью. Особенностью всех полиуретановых волокон является их высокая эластичность - разрывное удлинение их достигает 800%, доля упругой и эластичной деформации - 92-98%. Именно эта особенность и определяет область их использования. Спандекс применяется в основном при изготовлении эластичных изделий. С использованием этого волокна вырабатывают ткани и трикотажные полотна для предметов женского туалета, спортивной одежды.

Первое представление о том, что такое волокна, мы получаем еще в школе на уроках биологии. В широком значении, выражающем более общую сущность по отношению к частному, это понятие представляет класс материалов, состоящих из нитей или клеток.

Мышечное волокно - это структурная единица мышечной ткани, представляющая собой многоядерную клетку, которая состоит из большого количества других клеток, которые могут быть растительного, животного, минерального или искусственного происхождения.

Родом из старославянского

Происхождение слова "волокно"связывают со старославянским "влакно". Это слово бытует в современном болгарском, чешском, словацком, сербском языках. С небольшим фонетическим отличием встречается в польском - wlOkno. Существует родственное понятие и в древнеиндийском: valkas, что означает «лыко».

В русском языке в данной лексической единице произошли изменения в результате чередования гласных: ОЛО-ЛА. Поскольку "волокно" - словарное слово, его правописание нужно запомнить.

Чтобы получить представление о том, что такое волокна в качестве классификации материала, подробнее рассмотрим их виды.

Хлопок и луб

К волокнам растительного происхождения относятся лубяные и хлопковые. Тонкие нити хлопка покрывают семена хлопчатника. Они состоят в основном (94 %) из целлюлозы, а остальное приходится на воду, пектины, жиросодержащие, восковые, зольные вещества (элементы минерального питания, взятые растением из почвы).

Понять, что такое волокна хлопкового происхождения, можно, рассмотрев их под микроскопом. Мы увидим плоскую извитую ленточку с канальцем, заполненным воздухом.

Эти нити гигроскопичны, термостойки, обладают высокой прочностью по отношению к действию щелочей. Если хлопок поджечь, то ощутится запах жженой бумаги.

К отрицательным качествам относятся малая упругость и неустойчивость к действию кислот.

Волокна луба получают из стебля льна.Они представляют собой вытянутые в длину клетки с заостренными концами. В поперечном срезе имеют форму пятигранника. Больший процент состава - целлюлоза (80%), а остальные проценты приходятся на жировые, красящие, воскообразные минеральные примеси и лигнин. Присутствие лигнина придает повышенную прочность. Высокая теплопроводность делает лен всегда прохладным на ощупь.

Волокна животного происхождения

Козья, овечья, верблюжья и другая шерсть, а также натуральный шелк являются животными волокнами, состоящими из трех слоев: наружного чешуйчатого, основного коркового слоя и сердцевинного, который находится в центре нити.

Существует 4 типа шерстяных волокон:

  • извитое тонкое - пух;
  • промежуточный волос - среднее между пухом и остью;
  • грубое и мало извитое - ость;
  • короткое ломкое волокно - мертвый волос.

В зависимости от типов нити различают и виды шерсти: от тонкой, которая идет на изготовление шерстяных изделий высокого качества, до грубой, используемой для выработки сукна и войлока. Шерсть способна сохранять тепло и гигроскопична. При ее горении появляется запах жженого пера.

Самое легкое природное волокно - шелк. Получают его из кокона гусеницы шелкопряда.

Два белка - фиброин и серицин - входят в состав коконной нити. Натуральному шелку присущи мягкость, гладкость, высокая гигроскопичность, малая сминаемость. Недостатками являются высокая усадка крученой нити и низкая термостойкость. Шелк является ценнейшим сырьем для изготовления легкой летней одежды.

Синтетические нити

Что такое происхождения, можно понять, изучив их природу. Они вырабатываются посредством химического синтеза из мономеров, то есть низкомолекулярных веществ. В результате образуются Сырьем для капрона, лавсана, акрила, кримплена, являются продукты переработки каменного угля, нефти, газа. Эти волоконные нити обладают высокой прочностью, малой сминаемостью и усадкой, однако не гигроскопичны.

Разнообразие свойств полимеров, возможность их варьировать, а также доступность сырья являются стимулами для развития производства синтетических волокон.

Химические волокна

Их получают путем переработки таких синтетических веществ, как полиамиды, полиэфиры, а также природных материалов: целлюлозы, белков, казеина и других. Сырьем для получения данных волокон служат отходы хлопка, различные металлы, стекло, нефтеперерабатывающие продукты, каменный уголь.

Вискоза является одним из первых волокон химического происхождения, принявших масштабы промышленной выработки. Ее получают путем обработки древесной целлюлозы химическими реагентами.

Одним из главных недостатков вискозного волокна является высокая сминаемость. Для снижения этого качества его подвергают процессу химической модификации. В результате получают полинозное волокно, напоминающее тонковолокнистый хлопок.


dx.doi.org/ 10.18577/2307-6046-2015-0-2-9-9

УДК 677.1:678.8

ПРИМЕНЕНИЕ НАТУРАЛЬНЫХ ВОЛОКОН ПРИ ИЗГОТОВЛЕНИИ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

В настоящее время применение натуральных волокон при изготовлении современных полимерных композиционных материалов (ПКМ) приобретает все большую актуальность. Замена привычных стеклянных и углеродных наполнителей на натуральные в ряде случаев обоснована и приводит как к удешевлению продукции, так и к снижению влияния производственных факторов на окружающую среду. Стимулирование использования натуральных волокон в производстве также даст дополнительный импульс развитию традиционных для Российской Федерации сельскохозяйственных отраслей.


Введение

Основой развития и совершенствования производства композиционных материалов является выпуск разнообразной и конкурентоспособной продукции в количествах, достаточных для обеспечения потребностей как внутреннего российского рынка, так и экспортных поставок. Выполнение этой задачи основано на разработке новых материалов и совершенствовании имеющихся технологий современного производства композиционных материалов . При этом идет постоянный поиск передовых приемов переработки нового поколения материалов .

Одним из способов повышения эффективности производства полимерных композиционных материалов (ПКМ) является разработка ресурсосберегающих технологий, предусматривающих возможность использования продукции как растениеводства, так и деревообрабатывающей промышленности, что в свою очередь способствует снижению себестоимости продукции и рациональному расходованию природных ресурсов.

Объемы мирового производства и потребления натуральной древесины постоянно возрастают, но при этом возобновляемость лесных ресурсов не успевает за потреблением. В связи с этим возникает необходимость в новых источниках восполнения сырьевой базы. Кроме того, основная часть древесных ресурсов России располагается в восточной части страны, в то время как перерабатывающая промышленность в основном сосредоточена в центре, поэтому задача поиска доступного и дешевого сырья для производства композиционных материалов с использованием возобновляемого сырья стоит весьма остро. Ввиду этого широкое вовлечение в производство ПКМ недревесного сырья, например различных натуральных волокон, будет способствовать решению этой задачи. Для обеспечения внедрения «зеленых» технологий необходимо разработать систему технологических, технических, экологических, экономических и организационных мер, обеспечивающих экологически ориентированный рост экономики на основании применения эффективных инновационных технологий («зеленых» технологий, в том числе для разработки современных расплавных связующих и перспективных материалов на их основе с учетом их климатической устойчивости), а также заинтересованность в этом бизнес-сообщества .

Популярность натуральных волокон возрастает, в том числе в производстве композиционных материалов, - в частности, в наиболее технологически развитых отраслях промышленности, например в автомобильной. Натуральные растительные волокна обладают значительными экологическими преимуществами и имеют достаточно высокие физико-механические свойства. Такие волокна не содержат токсичных веществ, их можно быстро выращивать в необходимых количествах и они имеют приемлемую цену.

Материалы и методы

К сожалению, в отечественной промышленности при производстве ПКМ натуральные волокна не применяются, несмотря на их достаточно высокие физико-механические свойства. В настоящее время при производстве ПКМ в качестве наполнителей в основном используются стекло- и углеволокна. ПКМ на основе этих наполнителей необходимо использовать при воздействии высокой нагрузки, что часто происходит в авиации, космонавтике и специальном машиностроении. Однако существует множество областей применения ПКМ, где вполне достаточны более низкие свойства материала, а стоимость является принципиальным фактором, определяющим востребованность продукции на рынке. В таком случае применение биокомпозитоввполне оправдано и целесообразно. Приведенные в табл. 1 данные наглядно демонстрируют сопоставление основных свойств волокон, как традиционно используемых при производстве ПКМ, так и натуральных.

Таблица 1

Свойства волокон разных материалов

Плотность,

волокна, мк

Удлинение

при разрыве, %

Удельная прочность, г/текс

Стекловолокно

Углеволокно

Видно однозначное превосходство свойств стеклянного волокна, а тем более углеродного над натуральными волокнами, однако, если сопоставлять плотность материалов, а соответственно и массу изделия или удельную прочность, разница выглядит не такой существенной.

Результаты

В настоящее время в качестве материалов для отделки интерьеров железнодорожного состава используются металлы, термо- или реактопласты и их комбинации, а также (в меньшей степени) композиционные материалы на основе стекловолокна. В то же время во Франции, Финляндии, Испании ведутся разработки композиционных материалов, армированных натуральными волокнами (лен, конопля и др.), на основе как термореактивных, так и термопластичных связующих.

Весьма интересны данные, приводимые западноевропейской компанией NATEX, которая достигла немалых успехов в разработке и изготовлении ПКМ с использованием натуральных волокон как по препреговой, так и по инфузионной технологиям. В табл. 2 сравниваются свойства ПКМ на основе льняного и стеклянного волокон.

Таблица 2

Сопоставление свойств ПКМ, изготовленных на основе льняного и стеклянного волокон (по данным компании NATEX )

В табл. 2 приведена удельная прочность материалов и его модуль упругости.

Таким образом, в ряде случаев использование природных волокон при изготовлении ПКМ вполне оправдано, и такие крупные фирмы, как Audi, BMW, Opel, Peugeot, Renault, Seat, Volkswagen, Ford, Daimler, Chrysler, успешно используют эти материалы в производстве внутренней отделки автомобилей, различных панелей, сидений, бамперов (см. рисунок).

Применение натуральных волокон в автомобилестроении (данные компании BMW)

Применение волокон природного происхождения позволяет решить такие задачи, как использование возобновляемого ресурса, возможность более полной утилизации материала и, кроме того, снижение стоимости изделий, а в ряде случаев - возможная замена стекловолокна.

Рассмотрим влияние утилизации материалов из ПКМ на окружающую среду. Так, показательны результаты исследователей из Эйндховена , которые провели подробное исследование, как соотносятся эко-индикаторы материалов на основе льна и стекла. (Эко-индикаторы определяют по совокупности значительного числа параметров, которые включают в себя оценку влияния утилизации материала на озоновый слой Земли, зимний и летний смог, а также еще порядка 15 факторов.) Оказалось, что эко-индикатор для ПКМ на основе льняных волокон значительно ниже, чем эко-индикатор для ПКМ на основе стекловолокна. Такое существенное расхождение определяется возможностью гораздо более глубокой переработки и утилизации материала на основе природного волокна, а также значительно меньшим остаточным воздействием на окружающую среду.

Замена традиционных материалов, используемых для отделки интерьеров, на биокомпозитные должна приводить к снижению как массы изделий, так и себестоимости продукции ввиду значительно более низкой стоимости натуральных наполнителей (в 7-8 раз ниже по сравнению со стекловолокном) (табл. 3).

Таблица 3

Сопоставление стоимости различных наполнителей для изготовления ПКМ

Кроме того, благодаря применению натурального возобновляемого сырья снижается экологическая нагрузка на окружающую среду (по данным финского Технического исследовательского центра (VTT), снижается потребление химического сырья на 25%, а углеродные выбросы - на 35%). Снижается также содержание формальдегида, который часто используется при изготовлении подобной продукции.

Наиболее широкое применение композиционные материалы, армированные растительными волокнами, нашли в автомобильной промышленности. Для армирования ПКМ в этом случае могут использоваться различные натуральные волокна: лен, пенька, джут, сизаль, кокос. В странах с развитым автомобилестроением эти материалы обычно импортируются. В автомобилях стали все больше использовать прочные, стойкие к коррозии, легкие полимерные композиции. В настоящее время в современных автомобилях таких материалов ˃10% (по массе), и их количество постоянно растет.

Первым стал применять пластики в автомобилестроении Генри Форд в 1941 году. В 1953 году фирма Chevrolet уже делала многие детали из полимерных материалов, армированных различными волокнами, что сократило массу автомашины на 85 кг. В 1991-1992 годах у фирмы ВМW около 149 кг от массы автомашины (или 10,1%) составляли пластики. Первый бампер из пластика был сделан в компании Ford в 1968 году, а фирма Renault в 1971 году делает бампер из полиэфира, армированного стекловолокном. Армированный натуральным растительным волокном полипропиленовый бампер делала фирма Fiat для своих автомобилей 126-й и 128-й моделей. Натуральные волокна также начал использовать концерн Mercedes-Benz, но при изготовлении топливного бака и ряда деталей применялись композиты со стекловолокном. Эффективно использование таких композитов, где армирующее волокно ориентировано в направлении приложения нагрузки, но встречается много случаев использования неориентированных материалов.

Армирование пластиков натуральными волокнами, в частности льном, позволяет существенно упростить (в сравнении с армированием стекловолокном) переработку деталей, выработавших свой срок .

Обсуждение и заключения

1. Натуральные растительные волокна, такие как лен, пенька, джут, сизаль, кокос и др., являются прекрасным материалом для армирования полимерных композитов.
В качестве армирующих составляющих может использоваться ориентированное и спутанное, длинное и короткое льняное волокно, нетканые материалы, пряжа и ткань.

2. Натуральные растительные волокна - это материалы с достаточно высокими физико-механическими, химическими и экологическими свойствами, которые являются альтернативой синтетическим волокнам и стекловолокну.

3. Получать эти волокна можно в неограниченном количестве.

4. Увеличение производства полимерных материалов, армированных натуральными растительными волокнами:

Снижает цены на автомашины;

Стимулирует рост и развитие фермерских хозяйств;

Уменьшает загрязнение почв и улучшает состав воздуха.

5. Полимеры, армированные натуральными растительными волокнами, характеризуются меньшей массой, достаточно высокой прочностью, хорошей эластичностью и коррозионной устойчивостью.

6. Употребление натуральных волокон в таких полимерах, как крахмал, лигнин, гемицеллюлоза, дает продукцию, практически полностью подвергающуюся биоуничтожению.

7. Использование полимерных композитов, армированных натуральными растительными волокнами, такими, например, как лен, в автомобильной промышленности снижает массу большого числа деталей и всего автомобиля, что приводит к сокращению расхода топлива, снижению коррозии материалов и улучшению потребительских свойств автомашины.

8. Возможность полной вторичной переработки вышедших из строя деталей автомашин обеспечит сохранение окружающей среды и позволит регулировать потребление натуральных ресурсов, для Российской Федерации это касается в первую очередь льняного волокна. Замена стекловолокна волокнами из льна, конопли и сизаля в полипропиленовых элементах машин позволила снизить их массу на ~30-40% при сопоставимых механических свойствах.


ЛИТЕРАТУРА REFERENCE LIST

1. Каблов Е.Н. Авиакосмическое материаловедение //Все материалы. Энциклопедический справочник. 2008. №3. С. 2–14.
2. Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года //Авиационные материалы и технологии. 2012. №S. С. 7–17.
3. Каблов Е.Н. Химия в авиационном материаловедении //Российский химический журнал. 2010. Т. LIV. №1. С. 3–4.
4. Гуняев Г.М., Кривонос В.В., Румянцев А.Ф., Железина Г.Ф. Полимерные композиционные материалы в конструкциях летательных аппаратов //Конверсия в машиностроении. 2004. №4 (65). С. 65–69.
5. Каблов Е.Н. Материалы и химические технологии для авиационной техники //Вестник Российской академии наук. 2012. Т. 82. №6. С. 520–530.
6. Донецкий К.И., Хрульков А.В., Коган Д.И., Белинис П.Г., Лукьяненко Ю.В. Применение объемно-армирующих преформ при изготовлении изделий из ПКМ //Авиационные материалы и технологии. 2013. №1. С. 35–39.
7. Григорьев М.М., Коган Д.И., Твердая О.Н., Панина Н.Н. Особенности изготовления ПКМ методом RFI //Труды ВИАМ. 2013. №4. Ст..
8. Донецкий К.И., Коган Д.И., Хрульков А.В. Использование технологий плетения при производстве элементов конструкций из ПКМ //Труды ВИАМ. 2013. №10. Ст..
9. Душин М.И., Хрульков А.В., Раскутин А.Е. К вопросу удаления излишков связующего при автоклавном формовании изделий из полимерных композиционных материалов //Труды ВИАМ. 2013. №1. Ст..
10. Душин М.И., Коган Д.И., Хрульков А.В., Гусев Ю.А. Причины образования пористости в изделиях из полимерных композиционных материалов //Композиты и наноструктуры. 2013. №3 (19). С. 60–71.
11. Душин М.И., Чурсова Л.В., Хрульков А.В., Коган Д.И. Особенности изготовления полимерных композиционных материалов методом вакуумной инфузии //Вопросы материаловедения. 2013. №3 (75). С. 33–40.
12. Хрульков А.В., Душин М.И., Попов Ю.О., Коган Д.И. Исследования и разработка автоклавных и безавтоклавных технологий формования ПКМ //Авиационные материалы и технологии. 2012. №S. С. 292–301.
13. Тимошков П.Н., Коган Д.И. Современные технологии производства полимерных композиционных материалов нового поколения //Труды ВИАМ. 2013..

15. Каблов Е.Н., Щетанов Б.В., Ивахненко Ю.А., Балинова Ю.А. Перспективные армирующие высокотемпературные волокна для металлических и керамических композиционных материалов //Труды ВИАМ. 2013. №2. Ст..
16. Кириллов В.Н., Старцев О.В., Ефимов В.А. Климатическая стойкость и повреждаемость полимерных композиционных материалов, проблемы и пути решения //Авиационные материалы и технологии. 2012. №S. С. 412–423.
17. Коган Д.И., Чурсова Л.В., Петрова А.П. Технология изготовления ПКМ способом пропитки пленочным связующим //Клеи. Герметики. Технологии. 2011. №6. С. 25–29.
18. Мухаметов Р.Р., Ахмадиева К.Р., Ким М.А., Бабин А.Н. Расплавные связующие для перспективных методов изготовления ПКМ нового поколения //Авиационные материалы и технологии. 2012. №S. С. 260–265.
19. Мухаметов Р.Р., Ахмадиева К.Р., Чурсова Л.В., Коган Д.И. Новые полимерные связующие для перспективных методов изготовления конструкционных волокнистых ПКМ //Авиационные материалы и технологии. 2011. №2. С. 38–42.
20. Киселев М.В. Моделирование строения льняного чесаного волокна и процесса дробления льняных комплексов: монография. Кострома: Изд-во КГТУ. 2009. 110 с.

22. Угрюмов С.А. Совершенствование технологии производства композиционных материалов на основе древесных наполнителей и костры льна: Автореф. дис. д.т.н. М. 2009. 39 с.
23. Живетин В.В., Гинзбург Л.Н. Масличный лен и его комплексное развитие. М.: ЦНИИЛКА. 2000. 92 с.

1. Kablov E.N. Aviakosmicheskoe materialovedenie //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Himija v aviacionnom materialovedenii //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Gunjaev G.M., Krivonos V.V., Rumjancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukcijah letatel"nyh apparatov //Konversija v mashinostroenii. 2004. №4 (65). S. 65–69.
5. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
6. Doneckij K.I., Hrul"kov A.V., Kogan D.I., Belinis P.G., Luk"janenko Ju.V. Primenenie ob#emno-armirujushhih preform pri izgotovlenii izdelij iz PKM //Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
7. Grigor"ev M.M., Kogan D.I., Tverdaja O.N., Panina N.N. Osobennosti izgotovlenija PKM metodom RFI //Trudy VIAM. 2013. №4. St..
8. Doneckij K.I., Kogan D.I., Hrul"kov A.V. Ispol"zovanie tehnologij pletenija pri proizvodstve jelementov konstrukcij iz PCM //Trudy VIAM. 2013. №10. St..
9. Dushin M.I., Hrul"kov A.V., Raskutin A.E. K voprosu udalenija izlishkov svjazujushhego pri avtoklavnom formovanii izdelij iz polimernyh kompozicionnyh materialov //Trudy VIAM. 2013. №1. St..
10. Dushin M.I., Kogan D.I., Hrul"kov A.V., Gusev Ju.A. Prichiny obrazovanija poristosti v izdelijah iz polimernyh kompozicionnyh materialov //Kompozity i nanostruktury. 2013. №3 (19). S. 60–71.
11. Dushin M.I., Chursova L.V., Hrul"kov A.V., Kogan D.I. Osobennosti izgotovlenija polimernyh kompozicionnyh materialov metodom vakuumnoj infuzii //Voprosy materialovedenija. 2013. №3 (75). S. 33–40.
12. Hrul"kov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovanija i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovanija PCM //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
13. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokolenija //Trudy VIAM. 2013..
14. Kobets L.P., Deev I.S. Carbon fibres: structure and mechanical properties //Composites Science and Technology. 1998. Т. 57. №12. С. 1571–1580.
15. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov //Trudy VIAM. 2013. №2. St..
16. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost" i povrezhdaemost" polimernyh kompozicionnyh materialov, problemy i puti reshenija //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
17. Kogan D.I., Chursova L.V., Petrova A.P. Tehnologija izgotovlenija PKM sposobom propitki plenochnym svjazujushhim //Klei. Germetiki. Tehnologii. 2011. №6. S. 25–29.
18. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PCM novogo pokolenija //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
19. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PCM //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
20. Kiselev M.V. Modelirovanie stroenija l"njanogo chesanogo volokna i processa droblenija l"njanyh kompleksov: monografija . Kostroma: Izd-vo KGTU. 2009. 110 s.
21. Bos H. The potential of flax fibres as reinforcement for composite materials /In: Technische Universiteit Eindhoven. Eindhoven: 2004. P. 192.
22. Ugrjumov S.A. Sovershenstvovanie tehnologii proizvodstva kompozicionnyh materialov na osnove drevesnyh napolnitelej i kostry l"na : Avtoref. dis. d.t.n. M. 2009. 39 s.
23. Zhivetin V.V., Ginzburg L.N. Maslichnyj len i ego kompleksnoe razvitie . M.: CNIILKA. 2000. 92 s.

Вы можете оставить комментарий к статье. Для этого необходимо зарегистрироваться на сайте.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта